

HARNESS THE POWER OFKNOWLEDGE

Reservoir's Static Modeling

TRAIN

Introduction

Reservoir's static modeling is the process of building a digital representation of a subsurface reservoir, including its geometry, geology, and petrophysical properties

This model provides a framework for understanding the reservoir's potential for hydrocarbon production This comprehensive 5-day professional training course will equip you with the essential knowledge and skills to effectively construct and utilize reservoir static models for various exploration and production purposes

Course Objectives

By the end of this course, you will be able to:

- Understand the fundamental principles of reservoir static modeling and its role in reservoir evaluation
- Apply various techniques for defining reservoir geometry, including seismic interpretation, well log correlation, and geologic constraints
- Utilize various methods for characterizing reservoir geology, including facies modeling, geostatistical analysis, and geologic modeling software
- Determine petrophysical properties, such as porosity, permeability, and fluid saturation, for reservoir modeling
- Integrate reservoir static models with other geological and geophysical data for comprehensive subsurface interpretation

Course Agenda

Day 1: Introduction to Reservoir Static Modeling

- Explore the history, principles, and applications of reservoir static modeling in reservoir evaluation
- Understand the different types of reservoir static models and their suitability for various scenarios
- Review the data requirements and limitations of reservoir static modeling

Day 2: Seismic Interpretation for Reservoir Geometry

- Delve into the principles of seismic interpretation and its role in defining reservoir geometry
- Utilize seismic attributes, horizon mapping, and fault interpretation techniques to delineate reservoir boundaries

• Apply seismic interpretation to identify structural features, such as anticlines and synclines, that may impact reservoir distribution

Day 3: Well Log Correlation and Geologic Modeling

- Explore the principles of well log correlation and its application in reservoir static modeling
- Correlate well logs to identify stratigraphic units, facies transitions, and reservoir boundaries
- Utilize geologic modeling software to construct 3D geologic models that represent reservoir architecture

Day 4: Petrophysical Property Estimation

• Understand the importance of petrophysical properties, such as porosity, permeability, and fluid saturation, in reservoir modeling

- Utilize various methods to estimate petrophysical properties from core samples, well logs, and seismic data
- Apply petrophysical property distributions to create a realistic representation of reservoir heterogeneity

Day 5: Integration and Applications of Reservoir Static Models

• Discuss the integration of reservoir static models with other geological and geophysical data for comprehensive subsurface interpretation

• Utilize reservoir static models to predict fluid distribution, evaluate reservoir potential, and identify exploration targets

• Apply reservoir static models to optimize well placement strategies and enhance hydrocarbon recovery

Who Should Attend

This course is designed for:

• Aspiring and experienced geoscientists seeking to enhance their understanding of reservoir static modeling and its applications in subsurface evaluation

• Reservoir engineers involved in reservoir modeling, well placement, and production optimization

• Petroleum geologists working on geological modeling, facies analysis, and reservoir characterization

• Geophysicists utilizing seismic data and well log interpretation for reservoir modeling and subsurface interpretation

Course Benefits

• Develop a comprehensive understanding of reservoir static modeling principles, techniques, and applications

• Gain hands-on experience in building and utilizing reservoir static models using industry-standard software

• Enhance your ability to integrate reservoir static models with other subsurface data for improved reservoir characterization

• Apply reservoir static modeling knowledge to address real-world challenges in various geological settings, including hydrocarbon exploration, reservoir development, and environmental assessment

• Stay updated on the latest advancements and techniques in reservoir static modeling methodologies and subsurface interpretation